Sort by:
Filters:
In the last seven days, 170 new articles where published in 25 top journals in the field of oncology.
Major topics on this page:
Nature reviews. Cancer | Review | 2024 Dec
Zhou R and Others
Early detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal-precancer-cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer. In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models. Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention.
Cancer discovery | Journal Article | 2024 Dec 2
Yamaguchi N and Others
Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia-inducible factor-1α (HIF1α) nuclear retention and function. NPTX1 is overexpressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1α hypoxic response in PDAC. Significance: We identified the NPTX1-AMIGO2 axis as a regulatory mechanism upstream of HIF1α-driven hypoxia response that promotes PDAC liver metastasis. Therapeutic NPTX1 targeting outperformed a common chemotherapy regimen in inhibiting liver metastasis and suppressed primary tumor growth in preclinical models, revealing a novel therapeutic strategy targeting hypoxic response in PDAC.
Journal of clinical oncology : official journal of the American Society of Clinical Oncology | Randomized Controlled Trial | 2024 Dec
Martelli M and Others
PURPOSE: The role of consolidation radiotherapy in patients with primary mediastinal B-cell lymphoma (PMBCL) is controversial.
Cancer discovery | Journal Article | 2024 Dec 2
Grossmann LD and Others
Relapse rates in high-risk neuroblastoma remain exceedingly high. The malignant cells that are responsible for relapse have not been identified, and mechanisms of therapy resistance remain poorly understood. In this study, we used single-nucleus RNA sequencing and bulk whole-genome sequencing to identify and characterize the residual malignant persister cells that survive chemotherapy from a cohort of 20 matched diagnosis and definitive surgery tumor samples from patients treated with high-risk neuroblastoma induction chemotherapy. We show that persister cells share common mechanisms of chemotherapy escape, including suppression of MYC(N) activity and activation of NFκB signaling, and the latter is further enhanced by cell-cell communication between the malignant cells and the tumor microenvironment. Overall, our work dissects the transcriptional landscape of cellular persistence in high-risk neuroblastoma and paves the way to the development of new therapeutic strategies to prevent disease relapse. Significance: Approximately 50% of patients with high-risk neuroblastoma die of relapsed refractory disease. We identified the malignant cells that likely contribute to relapse and discovered key signaling pathways that mediate cellular persistence. Inhibition of these pathways and their downstream effectors is postulated to eliminate persister cells and prevent relapse. See related commentary by Wolf et al., p. 2308.
Cancer discovery | Journal Article | 2024 Dec 2
Klingbeil O and Others
The Hippo signaling pathway is commonly dysregulated in human cancer, which leads to a powerful tumor dependency on the YAP/TAZ transcriptional coactivators. In this study, we used paralog cotargeting CRISPR screens to identify kinases MARK2/3 as absolute catalytic requirements for YAP/TAZ function in diverse carcinoma and sarcoma contexts. Underlying this observation is the direct MARK2/3-dependent phosphorylation of NF2 and YAP/TAZ, which effectively reverses the tumor suppressive activity of the Hippo module kinases LATS1/2. To simulate targeting of MARK2/3, we adapted the CagA protein from Helicobacter pylori as a catalytic inhibitor of MARK2/3, which we show can regress established tumors in vivo. Together, these findings reveal MARK2/3 as powerful codependencies of YAP/TAZ in human cancer, targets that may allow for pharmacology that restores Hippo pathway-mediated tumor suppression. Significance: We show how genetic redundancy conceals tight functional relationships between signaling and transcriptional activation in cancer. Blocking the function of MARK2/3 kinases leads to the reactivation of the Hippo tumor suppressive pathway and may have therapeutic potential in YAP/TAZ-dysregulated carcinomas and sarcomas. See related commentary by Gauthier-Coles and Sheltzer, p. 2312.
Journal of clinical oncology : official journal of the American Society of Clinical Oncology | Randomized Controlled Trial | 2024 Dec
Yang JC and Others
PURPOSE: Epidermal growth factor receptor () tyrosine kinase inhibitors (TKIs) are standard first-line therapy for -mutant, metastatic non-small cell lung cancer (NSCLC); however, most patients experience disease progression. We report results from the randomized, double-blind, phase III KEYNOTE-789 study of pemetrexed and platinum-based chemotherapy with or without pembrolizumab for TKI-resistant, -mutant, metastatic nonsquamous NSCLC (ClinicalTrials.gov identifier: NCT03515837).
Leukemia | Multicenter Study | 2024 Dec
Thieblemont C and Others
Abstract: Primary results (median follow-up, 10.7 months) from the pivotal EPCORE NHL-1 study in relapsed or refractory (R/R) large B-cell lymphoma (LBCL) demonstrated deep, durable responses with epcoritamab, a CD3xCD20 bispecific antibody, when used as monotherapy. We report long-term efficacy and safety results in patients with LBCL (N = 157; 25.1-month median follow-up). As of April 21, 2023, overall response rate was 63.1% and complete response (CR) rate was 40.1%. Estimated 24-month progression-free survival (PFS) and overall survival (OS) rates were 27.8% and 44.6%, respectively. An estimated 64.2% of complete responders remained in CR at 24 months. Estimated 24-month PFS and OS rates among complete responders were 65.1% and 78.2%, respectively. Of 119 minimal residual disease (MRD)-evaluable patients, 45.4% had MRD negativity, which correlated with longer PFS and OS. CR rates were generally consistent across predefined subgroups: 36% prior chimeric antigen receptor (CAR) T-cell therapy, 32% primary refractory disease, and 37% International Prognostic Index ≥3. The most common treatment-emergent adverse events were cytokine release syndrome (51.0%), pyrexia (24.8%), fatigue (24.2%), and neutropenia (23.6%). These results underscore the long-term benefit of epcoritamab for treating R/R LBCL with deep responses across subgroups, including patients with hard-to-treat disease and expected poor prognosis (ClinicalTrials.gov Registration: NCT03625037).
Cancer discovery | Journal Article | 2024 Dec 2
Loi P and Others
Combined EZH2 and RAS pathway inhibitors kill KRAS-mutant colorectal cancer cells and promote durable tumor regression in vivo. These agents function by cooperatively suppressing the WNT pathway, driving differentiation, and epigenetically reprogramming cells to permit the induction of apoptotic signals, which then kill these more differentiated tumor cells.
Journal of experimental & clinical cancer research : CR | Review | 2024 Nov 28
Mussa A and Others
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Cancer discovery | Journal Article | 2024 Dec 2
AACR Cancer Disparities Progress Report 2024 Steering Committee and Others
Excerpts from the 14th edition of the annual American Association for Cancer Research Cancer Progress Report (https://cancerprogressreport.aacr.org/progress/) and the third edition of the American Association for Cancer Research Cancer Disparities Progress Report (https://cancerprogressreport.aacr.org/disparities/) to US Congress and the public, both released in 2024, highlight significant strides made possible through medical research, much of which is supported by federal investments in the NIH, NCI, FDA, and Centers for Disease Control and Prevention, as well as recent progress in understanding the overlapping and intersecting causes of cancer disparities and in addressing health inequities through evidence-based public policies.
Cancer discovery | Review | 2024 Dec 2
Repetto M and Others
This article discusses the specific advances made in precision oncology in 2024. We comment on the evolving nature of predictive molecular events used to select patients who will most benefit clinically from treatment. We also discuss advances in the development of strategic treatment regimens for combination therapies, rational drug design of small-molecule inhibitors, and structurally informed drug repurposing.
Trends in cancer | Review | 2024 Nov 26
Adam K and Others
Abstract: Cancer treatment has entered the age of immunotherapy. Immune checkpoint inhibitor (ICI) therapy has shown robust therapeutic potential in clinical practice, with significant improvements in progression-free survival (PFS) and overall survival (OS). Recently, checkpoint blockade of the lymphocyte activation gene 3 (LAG3) inhibitory receptor (IR) in combination with programmed death protein 1 (PD1) inhibition has been FDA approved in patients with advanced melanoma. This has encouraged the clinical evaluation of new LAG3-directed biologics in combination with other checkpoint inhibitors. Several of these studies are evaluating bispecific antibodies that target exhausted T (T) cells expressing multiple IRs. This review discusses the current understanding of LAG3 in regulating antitumor immunity and the ongoing clinical testing of LAG3 inhibition in cancer.
Cancer research | Review | 2024 Dec 2
Falcone M and Others
The striking ethnic and racial disparities in breast cancer mortality are not explained fully by pathologic or clinical features. Structural racism contributes to adverse conditions that promote cancer inequities, but the pathways by which this occurs are not fully understood. Social determinants of health, such as economic status and access to care, account for a portion of this variability, yet interventions designed to mitigate these barriers have not consistently led to improved outcomes. Based on the current evidence from multiple disciplines, we describe a conceptual model in which structural racism and racial discrimination contribute to increased mortality risk in diverse groups of patients by promoting adverse social determinants of health that elevate exposure to environmental hazards and stress; these exposures in turn contribute to epigenetic and immune dysregulation, thereby altering breast cancer outcomes. Based on this model, opportunities and challenges arise for interventions to reduce racial and ethnic disparities in breast cancer mortality.
Nature reviews. Cancer | Review | 2024 Dec
Anczukow O and Others
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Blood cancer journal | Editorial | 2024 Nov 28
Lipton JH
No abstract available
Molecular cancer | Review | 2024 Nov 29
He R and Others
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Nature reviews. Clinical oncology | Review | 2024 Dec
van Winkel CAJ and Others
Multispecific antibodies are engineered antibody derivatives that can bind to two or more distinct epitopes or antigens. Unlike mixtures of monospecific antibodies, the binding properties of multispecific antibodies enable two specific molecules to be physically linked, a characteristic with important applications in cancer therapy. The field of multispecific antibodies is highly dynamic and expanding rapidly; to date, 15 multispecific antibodies have been approved for clinical use, of which 11 were approved for oncological indications, and more than 100 new antibodies are currently in clinical development. Nevertheless, substantial challenges limit the applications of multispecific antibodies in cancer therapy, particularly inefficient targeting of solid tumours and substantial adverse effects. Both PET and single photon emission CT imaging can reveal the biodistribution and complex pharmacology of radiolabelled multispecific antibodies. This Review summarizes the insights obtained from preclinical and clinical molecular imaging studies of multispecific antibodies, focusing on their structural properties, such as molecular weight, shape, target specificity, affinity and avidity. The opportunities associated with use of molecular imaging studies to support the clinical development of multispecific antibody therapies are also highlighted.
Cancer discovery | Journal Article | 2024 Dec 2
Bloomberg New Economy International Cancer Coalition and Others
Despite exponentially increased industry investment in oncology research and development with more than $80 billion spent annually, patient enrollment in clinical trials remains below 5% globally. Our multistakeholder international cancer coalition envisions ecosystem transformation with capacity building through a global "hub-and-spoke" network model to expand access to and accelerate clinical trials, thus ending cancer as a major cause of death in this lifetime.
Nature reviews. Cancer | Review | 2024 Dec
Cordas Dos Santos DM and Others
Multiple myeloma is an incurable plasma cell malignancy that evolves over decades through the selection and malignant transformation of monoclonal plasma cells. The evolution from precursor states to symptomatic disease is characterized by an increasing complexity of genomic alterations within the plasma cells and a remodelling of the microenvironment towards an immunosuppressive state. Notably, in patients with advanced disease, similar mechanisms of tumour escape and immune dysfunction mediate resistance to modern T cell-based therapies, such as T cell-engaging bispecific antibodies and chimeric antigen receptor (CAR)-T cells. Thus, an increasing number of clinical trials are assessing the efficiency and safety of these therapies in individuals with newly diagnosed multiple myeloma and high-risk smoldering multiple myeloma. In this Review, we summarize the current knowledge about tumour intrinsic and extrinsic processes underlying progression from precursor states to symptomatic myeloma and discuss the rationale for early interception including the use of T cell-redirecting therapies.
Cancer research | Journal Article | 2024 Dec 2
Kaur J and Others
Breast cancer bone metastases increase fracture risk and are a major cause of morbidity and mortality among women. Upon colonization by tumor cells, the bone microenvironment undergoes profound reprogramming to support cancer progression, which disrupts the balance between osteoclasts and osteoblasts and leads to bone lesions. A deeper understanding of the processes mediating this reprogramming could help develop interventions for treating patients with bone metastases. Here, we demonstrated that osteocytes (Ot) in established breast cancer bone metastasis develop premature senescence and a distinctive senescence-associated secretory phenotype (SASP) that favors bone destruction. Single-cell RNA sequencing identified Ots from mice with breast cancer bone metastasis enriched in senescence, SASP markers, and pro-osteoclastogenic genes. Multiplex in situ hybridization and artificial intelligence-assisted analysis depicted Ots with senescence-associated satellite distension, telomere dysfunction, and p16Ink4a expression in mice and patients with breast cancer bone metastasis. Breast cancer cells promoted Ot senescence and enhanced their osteoclastogenic potential in in vitro and ex vivo organ cultures. Clearance of senescent cells with senolytics suppressed bone resorption and preserved bone mass in mice with breast cancer bone metastasis. These results demonstrate that Ots undergo pathological reprogramming by breast cancer cells and identify Ot senescence as an initiating event triggering lytic bone disease in breast cancer metastases. Significance: Breast cancer cells remodel the bone microenvironment by promoting premature cellular senescence and SASP in osteocytes, which can be targeted with senolytics to alleviate bone loss induced by metastatic breast cancer. See related commentary by Frieling and Lynch, p. 3917.